
International Conference on Control, Engineering & Information Technology (CEIT’14)     

Proceedings - Copyright IPCO-2014_ISSN 2356-5608 

137 
 

Development of analytical approach for linear 

switched reluctance motor and its validation by 

two dimensional FEA 
 
 

MAHMOUD Imed and REHAOULIA Habib 
 

High School of Sciences and Technology of Tunis (ESSTT), 
 5 av. Taha Hussein BP 56 – 1008 Tunis, Tunisia University 

Laboratory of Signal, Image and Energy Control (SIME) 
E-mail: Mahmoud.Imed@issatm.rnu.tn 

                                    E-mail: Habib.Rahaoulia@esstt.rnu.tn 
 
Abstract – This paper gives an overview of modelling technique to describe the 

nonlinear behaviour of saturated Linear Switched Reluctance Machine (LSRM). 

The approach is based on the inductance versus position and current. Taking into 

account the non-linearity of the magnetic circuit, models are expressed by either 

Fourier series or polynomials where the only first three components are consid-

ered. The results of these analytical approaches are compared with those obtained 

using finite element methods (FEM). 
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1. Introduction 

The Linear Switched Reluctance Motor (LSRM) is always operated in the mag-

netically saturated mode to maximize the energy transfer.  The magnetic flux 

linked by a single phase must be known to develop a sophisticated controller.  The 

inherent magnetic nonlinearity of the LSRM must be taken into account by appro-

priate modelling of the machine characteristics, [1-6-8].   

In a LSRM, the phase inductances and flux linkages vary with rotor position due 

to stator and rotor saliencies.  The phase inductances and flux linkages at any rotor 

position also vary with the instantaneous phase currents because of magnetic satu-

ration. However, these variations can be modelled analytically using the data ob-

tained through FEM or through experiments. These analytical expressions are 
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used to represent the LSRM dynamics and hence the machine performance can be 

obtained, [11-23-24-26-27-28-29]. 

Obviously, the high degree of nonlinearity makes very difficult the modelling of 

the flux linkage or the phase inductance.  Many researchers have addressed the 

problem of calculating the inductance or flux linkage from rotor position and 

phase current analytically with various degrees of accuracy, [10-12-13-14-16]. 

In order to determine a refined model which describes the behavior of a saturated 

reluctant structure, there are basically two ways to represent the static LSRM 

characteristics.  The first way is to plot the phase flux linkage variations with rotor 

position and phase current. The second way is to plot the phase inductance varia-

tion with rotor position at different phase currents.  These static characteristics are 

highly nonlinear.  Figure 1 shows a classification of the different LSRM model-

ling techniques, [2-3-7-9-19-20-35-39-40]. 

 

 
Fig.1. Classification of LSRM modelling. 

 

Specifications of the designed prototype of the LSRM are shown in table 1. 
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Fig. 2. Main dimensions of the conceived actuator. 

 

Table 1. Motor mechanical and electrical parameters 

 

2. Inductance -based model of LSRM 

In a LSR machine, the reluctance of the magnetic path in a given phase changes 

with rotor movement.  The reluctance is maximum when the stator and rotor poles 

are unaligned and minimum when the poles are aligned.  This variation in reluc-
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tance reflects in the self-inductance of the respective stator phase.  When the stator 

and rotor poles are aligned, the self-inductance of the stator phase will be maxi-

mum and when the poles are unaligned, the self-inductance of the phase will be 

minimum. The phase inductance in a LSRM is a periodic function of the rotor po-

sition.  At any given rotor position, the phase inductance also varies with the in-

stantaneous phase current because of magnetic saturation. Therefore, in the induc-

tance-based model, the position dependency of the phase inductance is represented 

by a limited number of Fourier series terms and the nonlinear variation of the in-

ductance with current is expressed by means of polynomial functions, [23-25-33-

34]: 
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With i x etm,  are respectively the phase current, the position of the mover and 

the number of terms in the Fourier series. 

The accuracy and stability of numerical simulations are the main challenges which 

should be met. To simplify the expression (1) only the first three terms of the Fou-

rier series are considered. This leads to simplify the expression of the inductance 

given by the equation (2), [4-20]: 
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With 
j

L x i and N( , )  are respectively the inductance associate to the phase j  in 

the position x  of the mover for the current 
j
i  and the number of phase. 

To determine the three coefficients L L et L
0 1 2
, , we use the inductance at three 

positions: aligned position
c j
L i( ) , unaligned position

op j
L i( ) and midway posi-

tion between the above two positions
i j
L i( ) . Note that 

op j
L i( )  can be treated as 
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a constant but, 
c j
L i( ) and 

i j
L i( )  are functions of the phase current 

j
i  and can be 

approximated by the polynomials, [15-21-22-23-38]: 
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Where p  is the order of the polynomials and 
n n
a b,  are the coefficients. In our 

research, p 6=  is chosen after we compare the fitting results of different p  val-

ues, ( p 3= , p 4= , p 5=  and p 6=  have been tried and compared). Result the 

inductance of aligned position
c j
L i( ) and midway position 

i j
L i( ) are approxi-

mated respectively by the equation (5) and (6): 
 
 Figure 3 shows the evolution of the inductance versus current in the aligned and 

the midway postions. 

 

                            a)                                                    b) 
 

Fig. 3. Evolution of the inductance vs current 
in aligned (a) and midway positions (b) 
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Consequently, the three coefficients for the Fourier series can be computed as: 
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The stator phase inductance at the aligned position varies considerably with the 

stator phase current because of the magnetic saturation.  The unaligned inductance 

does not vary much mainly because of the large reluctance that characterizes huge 

air gap in the flux path. It can be observed that the inductance characteristics ver-

sus current with three positions obtained by the proposed model closely match 

those obtained by finite element methods, figure 4.  
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       Fig. 4. Extreme left phase: Comparison of inductance versus current with three  

positions__Model, *FEM. 
 
 

 
Fig.5. Extreme left phase: Comparison of inductance versus position with different 

 currents__Model, *FEM. 
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A similar comparison is made for the characteristic of inductances versus posi-

tions for different values of currents, to show the effectiveness of the proposed 

model. Figure 5 shows a good agreement between the model and the finite ele-

ment method MEF.   

Multiplying the expression of inductance by the current ( i ), it gives the expres-

sion of linkage flux: 

( ) ( ), ,ϕ =i x iL i x                                                                                            (10) 

Figure 6 gives the comparison of linkage flux produced by the left extreme phase 

versus current for different positions. It can be observed that the linkage flux ver-

sus current for different position characteristics which are obtained by the pro-

posed model closely match those obtained by finite element methods. These re-

sults prove the effectiveness of the proposed model. 

 
Fig. 6. Extreme left phase: Comparison of linkage flux versus current with  

different positions __Model, *FEM. 
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( )
1

,
=

=∑
N

j

j

F F i x                                                                                               (11) 

Where N  is the number of phase, 
j
F  the force of phase j  and 

j
i  the phase cur-

rent.  Consequently, the force 
j
F  can be described by the following equation:   
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j
L x i( , ) is the inductance associate to the phase j  in the position x  of mover for 

the current 
j
i . 

If the current is applied to a given phase, with stator and rotor teeth unaligned, the 

rotor will be attracted toward the balance position where the flux is maximum 

(aligned position) developing a force generally expressed by:   
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Fig. 7. Extreme left phase: Comparison of the thrust force as function of mover position 

__Model, *FEM. 
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Figure 7 shows a perfect coincidence between the force characteristic determined 

by the proposed model and that taken via the finite element method (MEF).  This 

represents a proof of the effectiveness of the proposed model.   
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c) 
Fig. 8.  Evolution of the position, speed and thrust force on four steps. 

 

Figure 8, respectively illustrates the dynamic behavior of the machine for the 

model without saturation and with saturation (refined model) starting from the 

speed and of the angular position.  The superposition of these results shows that 

the dynamics of the evolution of the position is respected. A static error due to 

friction affects the positions of balance: [5-41]. 

The refined model of the LSRM is characterized by a strongly oscillatory transla-

tion compared to the linear model.  These oscillations are disturb the precision of 

the position and the constancy speed often required by many industrial applica-

tions and especially in the medical fields.  This problem often leads to losses of 

synchronism, [11-17-18-26-28] 

3. Conclusion 

It is essential to have an accurate model of a Linear Switched Reluctance Motor 

that describes its static characteristics. It has been shown in this paper that there 

are different ways of modelling static characteristics of an LSRM.  Developed 
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tion accounting for magnetic saturation. Results are compared to those obtained 

via the 2D-FEM. The comparison shows a reasonable agreement, proving the va-

lidity of the proposed approaches.   
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